edHelper subscribers - Create a new printable

Sample edHelper.com - LinearEquations Worksheet

 Name _____________________________ Date ___________________
Linear Programming
Find the minimum and maximum values of the objective quantity.
Only place the answers to ? in the puzzle. You do not need to put the answers to ____ into the puzzle.
 5  - 8 4  - 2  - 3  - 6 1  - 7

down 1.

5x + y    -21
3x - 2y    3
2x + 3y    2
x + 8y    -12
f(x,y) = 4x - y

 The minimum value of f(x,y) is at point ( ? , ____ )

down 2.

x - y    13
3x - y    25
x + 6y    -8
x - 4y    12
f(x,y) = -8x + 11y

 The minimum value of f(x,y) is at point ( ____ , ? )

down 3.

4x - 3y    0
2x - 3y    0
8x - 7y    -10
x - y    -2
f(x,y) = 2x - 5y

 The maximum value of f(x,y) is at point ( ____ , ? )

down 4.

3x - 4y    14
4x + y    6
4x - 5y    42
3x + 2y    20
f(x,y) = -3x - 4y + 11

 The minimum value of f(x,y) = ?

down 5.

x - y    1
2x - 3y    2
2x    -10
x - y    1
f(x,y) = x - 10y - 23

 The maximum value of f(x,y) is at point ( ? , ____ )

down 6.

3x - y    19
5x - y    39
x - y    3
x + y    5
f(x,y) = 10x - 8y

 The maximum value of f(x,y) is at point ( ? , ____ )

across 1.

11x - 8y    -18
9x - 4y    -37
x - y    -3
13x - 5y    -48
f(x,y) = -11x - 7y

 The maximum value of f(x,y) is at point ( ? , ____ )

across 2.

4x - 3y    12
4y    -24
3x + y    9
2x + y    -4
f(x,y) = -12x + 2y - 21

 The minimum value of f(x,y) = ?

across 3.

4x + 3y    39
13x + y    13
x + y    1
5x - 6y    -39
f(x,y) = 9x - 9y

 The minimum value of f(x,y) = ?

across 7.

2x - y    6
x + 2y    13
7x - 6y    -29
x + y    -6
f(x,y) = -8x - 5y

 The maximum value of f(x,y) = ?

across 8.

4x - 5y    29
3x - 11y    87
4x    4
x - 2y    19
f(x,y) = 7x - 6y