edHelper subscribers - Create a new printable

Not a subscriber?  Sign up now for the subscriber materials!
Sample edHelper.com - LinearEquations Worksheet

 Name _____________________________ Date ___________________
Linear Programming
(Answer ID # 0300286)
Find the minimum and maximum values of the objective quantity.
Only place the answers to ? in the puzzle. You do not need to put the answers to ____ into the puzzle.
 4  - 3 8 5  - 6 9 10 7 2  - 1

down 1.

4x + 3y    -15
2x - y    5
5y    -5
f(x,y) = -3x - 2y

 The maximum value of f(x,y) = ?

down 2.

x - 5y    17
x + 3y    -7
x - y    1
f(x,y) = -8x + 12y

 The maximum value of f(x,y) is at point ( ____ , ? )

down 3.

3x - 2y    -26
7x - 3y    -44
2x - 3y    -19
f(x,y) = -7x + 8y - 15

 The maximum value of f(x,y) = ?

down 4.

2x - 3y    15
4x + 5y    -3
14x + y    105
4x + 5y    63
f(x,y) = 6x - 10y

 The minimum value of f(x,y) = ?

down 5.

9x - 7y    35
4x - y    5
13x - 8y    59
f(x,y) = x + 7y - 18

 The minimum value of f(x,y) = ?

down 6.

19x - 3y    27
5x - y = 5
5x + y    -9
3x - y    1
f(x,y) = -3x - 9y

 The minimum value of f(x,y) is at point ( ? , ____ )

down 7.

3x - y    5
x - 2y    5
x + y    11
3x - 5y    1
f(x,y) = -9x - 2y

 The minimum value of f(x,y) is at point ( ? , ____ )

across 2.

4x - 5y    -5
2x - 5y    -5
3x - 2y    5
3x + 4y    -19
f(x,y) = 6x - 11y

 The maximum value of f(x,y) is at point ( ? , ____ )

across 4.

5x - 6y    6
x + y    -1
9x - 2y    46
f(x,y) = -12x - y

 The minimum value of f(x,y) = ?

across 5.

5x + 2y    -26
8x - 3y    8
3x - 5y    3
f(x,y) = -5x + 6y

 The minimum value of f(x,y) = ?

across 8.

5x - y    0
7x - 6y    23
3y    0
x - y    3
f(x,y) = -4x - 5y

 The maximum value of f(x,y) = ?

across 9.

5y    -35
7x - 4y    28
x - 2y    9
x - y = 4
f(x,y) = -2x + 4y + 10

 The maximum value of f(x,y) is at point ( ? , 0 )

across 10.

x + y    0
x - 2y    2
9x - 5y    70
4x - y    15
f(x,y) = 10x - 10y